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A formalism is presented for estimating critical cluster size as defined in classical 
models for nucleation phenomena. The method combines Bennett's Monte 
Carlo technique for determining free-energy differences for clusters containing n 
and n - 1 atoms with the steady state nucleation rate formalism. A simple form 
for the free energy of formation of the n cluster [including a term A (n)n 2/3] is 
used to predict critical cluster size and critical supersaturation ratio, S*. This 
approach is applied to Lennard-Jones vapor clusters at 60 K. Results for 
free-energy differences for the 13, 18, 24, and 43 clusters predict a critical cluster 
size of 70 _+ 5 atoms at a critical supersaturation ratio given by lnS*= 2.45 _+ 
0.15. This method is intended to provide estimates of critical cluster size for 
more ambitious attempts to calculate cluster free energies or for initializing 
conditions in microscopic simulations of nucleating systems. 
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1. I N T R O D U C T I O N  

W e  p re sen t  a m e t h o d  for  e s t ima t i ng  the  n u m b e r  of  a t o m s  or  m o l e c u l e s  in 

the  cr i t ica l  c lus te r  as  d e f i n e d  in c lass ica l  m o d e l s  fo r  n u c l e a t i o n  p h e n o m e n a .  

T h e  cr i t ica l  c lus te r  has  e q u a l  p r o b a b i l i t y  of  g a i n i n g  o r  los ing  an  a t o m  (or  

m o l e c u l e )  a n d  c o r r e s p o n d s  to a r e l a t ive  m a x i m u m  in the  w o r k  r e q u i r e d  to 

f o r m  the  c lus te r  f r o m  the  p a r e n t  phase .  H e n c e ,  in m o s t  a t t e m p t s  to 
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determine the critical cluster size for application to the steady state nucle- 
ation formalism, free energies are generated for a range of cluster sizes. In 
a recent paper, Garcia and Torroja ~1) calculate energies of formation for 35 
Lennard-Jones clusters for a range of temperatures using an integration 
technique similar to that of Lee, Barker, and Abraham ~2). Results from 
Ref. 2 were combined with the data from the 35 clusters to predict the 
onset of nucleation at higher temperatures. While the determination of free 
energies is manageable when using bulk models for the clusters ~3), the 
approach is nontrivial when the clusters are treated as atomic or molecular 
aggregates r The motivation for this work has been to obtain an 
estimate of the critical cluster size as input for subsequent work involving 
extensive calculations of free energy or for setting up initial conditions for 
Monte Carlo or molecular dynamics simulations. The method we propose 
avoids a direct calculation of free energy for the clusters and uses instead a 
free-energy difference for clusters containing n and n -  1 atoms. The 
free-energy difference approximates the derivative of the free energy of 
formation of the n cluster with respect to n, and relates the critical cluster 
size, n*, to the supersaturation, S, required at that temperature. 

In this paper we outline the formalism for estimating critical cluster 
size in Section 2, describe the Metropolis Monte Carlo method using 
Bennett's technique ~6) for calculating free-energy differences for the n and 
n - 1 clusters in Section 3, and apply this method to Lennard-Jones vapor 
clusters at 60 K in Section 4. Additional comments and conclusions are 
given in Section 5. 

The application of this method to Lennard-Jones vapor clusters (ar- 
gon) predicts a critical cluster size of 70 + 5 atoms at a critical supersatu- 
ration ratio given by In S* = 2.45 _ 0.15. The latter agrees reasonably well 
with experimental data. A more extensive study using this technique could 
provide additional temperature dependent data. However, it is our purpose 
here only to present the formalism and illustrate the method with a simple 
example. Presently, work is in progress on the application of this technique 
to water vapor clusters and to water clusters absorbed on surfaces of 
hexagonal silver iodide. In the latter case, the interest is in the use of n* and 
In S* as probes for the nucleation efficiency of specific substrate features. 

2. FORMALISM FOR EST IMATING CRIT ICAL CLUSTER SIZE 

In the classical steady state nucleation rate formalism, the nucleation 
rate J, for homogeneous nucleation is given by ~7) 

[ 1' J = ~n I / (C , ,N , , /V)  ~ Cn.N.. / V (1) 
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where Cn is the rate at which monomers are condensing on the n cluster 
and Nn/V is the concentration of n clusters in the parent phase. The N n is 
related to the canonical partition function for the n cluster by the following 
equation which assumes that the system is composed of a mixture of 
noninteracting ideal gases--each of cluster size n: 

N. = [ Nl/  Z(1) ]nZ(n) (2) 

The Z(n) is the canonical partition function for the n cluster and is related 
to the configurational integral, Q(n), as follows: 

Z(n) -- A"V"Q(n)/n! (3) 

where A = (2~rmkT/h2) 3/2 and m, k, and h are the mass, Boltzmann 
constant, and Planck's constant, respectively. The configurational integral 
is defined as follows: 

Q(n)= v-n f  f ' ' '  (4) 
where U is the interaction potential for the system, and the ~i are atomic 
position vectors. Combining Eqs. (2) and (3), one obtains 

n[ N 1 nlnN1 (5) 

where the quantity { - I n [  Q(n)/(n! Nt) ] - n lnN1) is defined to be the free 
energy of formation for the n cluster, Aw(n)/kT. 3 The difference in free 
energies of formation for the n and the n -  1 clusters approximates the 
derivative with respect to n and is given by 

Q(n) ln(N~ - I n S  (6) d[Aw(n) /kT]/dn=-In Q(n -  1) 

Equation (6) has relevance in continuous variable steady state nucleation 
rate theory since the condition d(Aw/kT)/dn = 0 is satisfied at n equal to 
n*. Thus the following condition can be used to estimate a value of l n S  
which corresponds to a critical cluster size of n* at the temperature T: 

Q(n*) N~  
0 ~ - l n  Q(n*- 1) In n / ~  l nS  (7) 

3 In this form for the energy of formation we have omitted the - 1 commonly found when 
comparing the statistical mechanical formalism with the classical (liquid drop) energy of 
formation. See, for example, Ref. 8. The - 1 is associated with the translational free energy 
of the center of mass of the cluster. 
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In the above NO/V is the equilibrium concentration of monomers at the 
temperature T. If one is able to calculate the first term in Eq. (7) for a few 
cluster sizes a range of S values can be predicted. In the method proposed 
In S is plotted versus n*-1/3 and a slope determined. If one further wishes 
to predict a critical supersaturation ratio it is necessary to make an 
additional assumption about the form for Aw(n)/kT. We assume 4 

Aw(n) /kT= A(n)n 2/3 - nlnS - -~ ln(n) - ln (AV/N ~ (8) 

where A (n) is a temperature-dependent parameter representing the surface 
tension contribution to the energy of formation of the n cluster. Differenti- 
ation of Eq. (8) and use of d[Aw(n*)/kT]dn = 0 relates A(n*), n*, lnS, 
and dA / dn: 

l n S =  2 A ( n*)n *-'/3 - 3/ (2n*)  + ( dA / dn)n .2/3 (9) 

If dA/dn is small, it can be neglected in the first approximation and the 
slope of In S + 3/(2n*) provides an estimate for A (n*). A determination of 
A (n*) for a range of n* values allows a check on the assumption that the 
last term in Eq. (3) is negligible. Substitution of n*, A(n*), and the 
corresponding In S into Eq. (8) gives Aw(n*)/kT. Using the latter quantity 
and Eqs. (1) and (5), J(n*, T) can be determined in this simple model. The 
value J(n*, T) = 1 cm -3 sec-1 locates the value of n* corresponding to the 
critical supersaturation ratio, S*. For this calculation, C,. can be approxi- 
mated by 4~ra2n .2/3 [kT/(27rm)]l/2N~y, where Y =[lnS/(6~rn*)] ~/2 and 
(4~ra03/3)- l is the bulk liquid number density. O) When evaluated in the cgs 
system, In Cn. = 60 + 2 In S + 5 for a range of systems and temperatures. 

3. THE MONTE CARLO TECHNIQUE 

This technique is adapted from that developed by Bennett (6) for 
determining free-energy differences between systems with slightly differing 
interaction potentials. The two systems which we consider are clusters of n 
and n - 1 atoms, each of which is constrained to be within a volume, V. In 
order to equalize the degrees of freedom in both systems, we retain all n 
atoms in the "n - 1 cluster" and gradually turn off the interaction between 
the nth atom and all other atoms in the cluster. 5 Thus, in ensemble A the n 
atoms have a total interaction potential given by 

UA = (U + AU) / (kT)  (10) 

4 The general form for Eq. (8) is suggested by the work of King et al. and Binder and Stauffer 
(Ref. 9). 

5 We are indebted to F. F. Abraham for pointing out  this method to us. 
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and in ensemble B the n atoms have a total interaction potential given by 

U~ = (U + ~ A U ) / ( k T )  (11) 

where 
n--1 

U= ~ u(rij) (12) 
i j> i  

and 
n - 1  

u(rl.) (13) 
i ~ l  

The u(ro) is the effective pair potential between the ith a n d j t h  atoms. In 
ensemble B, as values for )k are reduced to zero the interaction between 
atom n and the rest of the cluster is turned off and 

limit QA(n)/QB(n ) = Q ( n ) / Q ( n -  1) (14) 
k,---~0 

Thus we use Bennett's technique to calculate QA (n)/QB(n) (6): 

QA(n)/QB(n) = ( f ( U  A - U a + C a ) ) B / ( f ( u  B - u A - Ca))ne cx (t5) 

where f (x )  = (1 + eX) - l, ( f )A denotes a Metropolis Monte Carlo average 
of f in the A ensemble, and C a is a constant for fixed A. In the Bennett 
technique one calculates the Fermi function averages for a range of C x 
values and searches for the value of C a which makes ( f ( x ) ) ~ / ( f ( - x ) )  A 
= 1.0. This value of Ca then satisfies 

C a = In[ QA(n)/QB(n)] (16) 

One can further show that for C a satisfying Eq. (16), 

d 
d-~ Ca -- (A U ) a / k r  (17) 

and 

d 2 
dX 2 Ca = [ ( A U )  2 -- ( A U 2 ) . ] / ( k T )  2 (18) 

Thus an efficient procedure is to calculate C a for ), close to zero and use 

C ~ In[ Q(n) /Q(n  - I)]--- C a -  X ( A U ) , / k T  (19) 

A direct calculation of C, i.e., setting h = 0, results in unmanageable 
fluctuations in the Fermi function averages. 

4. APPLICATION TO LENNARD-JONES CLUSTERS 

The Monte Carlo technique discussed in the last section is applied to 
clusters of Lennard-Jones atoms where u (r ) - -4e [ (o / r )  1 2 -  (a/r)6], E = 
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Table 1. Values for n, the number of atoms in the cluster, 
N, the number of Monte Carlo steps (K = 1000), 

C a, - - (A U)B~., and C. For all the Calculations ~ = 0.1 

n N C x - (AU)8~ C 

13 1100K 3.50 0.019 3.66 
18 1300K 4.03 0.021 4.21 
24 1300K 4.36 0.022 4.55 
43 II00K 4.95 0.021 5.13 

119.4 K, and o = 3.4 A. In these calculations we adopt the following 
definition of a cluster: n atoms confined to a spherical volume centered on 
the center of mass and with number density 4.87 • 10 -3 a toms/A 3. This 
density is approximately one fifth that of bulk liquid and gives constraining 
volumes which have been suggested by Lee et al. ~2) to produce minimal 
effects on the free energy of the clusters. 

The results of the calculations for C as determined from Eq. (19) are 
given in Table I, together with the number of Monte Carlo steps, N, for 
each run. In Eq. (7) a value of 8.0 is used for - l n [ ( N ~  This 
corresponds to a value of 16.4 for ln(AV/N~ 6 The n~ V in this formalism 
is the number density used in the Monte Carlo calculations. In order to 
maintain consistency with the potential formalism, we use the predicted 
intercept as determined by plotting C v. n-~/3 and fitting a straight line to 
the data. The value of C at infinite n should be equal to - l n [ ( N ~ / V )  
/(n/V)]. As a further check on this procedure the results reported by 
Torrie and Valleau (10 were extrapolated to 60 K with a prediction of about 
16.1 for ln(AV/N~ 

In Fig. 1 are presented the values of In S + ( 3 / 2 ) n -  l [using Eq. (7)] for 
n = 13, 18, 24, and 43 plotted as a function of n -1/3. A straight line fit to 
these points passes through In S equal to zero at infinite critical cluster size 
- -as  it should. Also shown in Fig. 1 are the corresponding values for A (n*) 
as determined from Eq. (9) with dA/dn = 0. The average value of A(n*) 
for the four calculations, A, is 15.1 and corresponds to an effective surface 
tension for the clusters of about 22 ergs /cm 2. [To make this approximation 
the surface tension is assumed to be (4r - 1-AkT.] 

The energy of formation as a function of critical cluster size, n*, can 
be approximated by substituting lnS, n*, and A(n*) into Eq. (8) for the 
four cluster sizes examined. Intermediate values of n* can be treated by 
interpolating between the data points in Fig. 1. For larger clusters, energies 

6 The value 16.4 for ln(A V/N ~ can also be obtained by substitution of the NO/V from the 
extrapolation procedure of Ref. 10. 
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Fig. 1. The quantity In S + (3/2)n*-I plotted as a function of n*-I/3 (O) and the corre- 
sponding values of A (n*) (i), at T = 60 K for Lennard-Jones vapor clusters. 

of  format ion can be estimated f rom Eq. (8) using extrapolations of the 
results in Fig. 1. We  find a value of  Aw(n*)/kT equal to in(?, ,  at  n* = 70, 
which predicts a critical supersaturation given by  In S* = 2.45. This value 
corresponds to an experimental  value of loglop(a tm ) = - 0 . 9  ___ 0.2. 7 Figure 
2 shows the predicted value superimposed on experimental results obta ined 
by W u  et al., (12) and  by  Stein (13) for the onset of nucleat ion in argon 
vapor. 

-1 
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" - 3  O B  

0 0 0 0  

3o .......... i ...... f 

40 50 60 T(K) 

Fig. 2. Onset of argon condensation by homogeneous nucleation. Solid circles are experimen- 
tal results from Ref. 12; solid triangles are experimental results from Ref. 13. The solid line is 
the classical model prediction. The predicted value from this work is r-l, corresponding to a 
critical supersaturation ratio of 2.45 at T = 60 K for Lermard-Jones vapor clusters. 

7 Uncertainties reflect differences in extrapolation formulas for toglop~ for argon. Ref. 10 
gives -0.80 and Eq. (12) of Ref. 1 gives - 1.01 for loglop(atm ) at 60 K for in S = 2.45. 
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During the course of this work, some calculations were done on the 
n = 80 cluster. Preliminary results indicate a lower value of A (n*) (14.8) 
than that obtained for the other four clusters. However, more extended 
runs on the 80 cluster are necessary because of the additional degrees of 
freedom. Comparisons of the free-energy differences for the n and the n - 1 
clusters in this calculation with the results of Refs. 1 and 2 can be only 
approximate since Ref. 1 reports free energies of formation at a specific 
pressure, and Ref. 2 gives the free energies for clusters which differ in size 
by 10-30 atoms. However, for n = 13, 18, 24, and 43 we obtain f ( n ) -  
f ( n  - 1) = - 11.9, - 12.5, - 12.9, and - 13.5, respectively, where f ( n )  --  
- l n Z ( n ) + l n ( A V / N ~  These values can be compared to 
[ f ( 4 3 ) -  f(13)]/30"-~ - 1 3  from Ref. 2, and f ( 1 3 ) -  f(12)'-~ - 1 2  from Ref. 
1. For the latter number we use equilibrium vapor pressure at 60 K for 
argon as calculated in Ref. 10. In the present procedure for estimating 
critical cluster size eight Monte Carlo runs of about 106 steps each are 
required. In the procedures of Refs. 1 and 2, from five to ten times as many 
Monte Carlo runs (of about 106 steps) are required to examine the n 
dependence of the free energies of the clusters. 

5. CONCLUSIONS AND COMMENTS 

We have proposed a method for estimating critical cluster size which 
utilizes Monte Carlo calculations of the free-energy difference between 
clusters of size n and n -  1. This free-energy difference can be used to 
estimate the supersaturation ratio required to produce a critical cluster size, 
n = n*, at the prescribed temperature. With the aid of an assumed analytic 
form for the free energy of formation for the n* cluster, an effective surface 
tension for that cluster size can be approximated. Using this formalism 
applied to Lennard-Jones vapor clusters (argon) we estimate a critical 
cluster size of about 70 + 5 atoms at a critical supersaturation ratio of 
2.45 +_ 0.15 at 60 K. This result agrees with experimental data for the onset 
of nucleation in argon vapor. 

We view this method as a tool for approximating critical cluster size 
when considering more extensive calculations of free energies and for 
initializing conditions for the simulation of nucleation phenomena via 
molecular dynamics. Our particular interest in this method will be in 
probing the ice nucleation efficiency of substrate features by estimating 
critical cluster sizes on specific surface environments. Work is in progress 
on the application of this method to water vapor clusters using effective 
pair potentials ~ 14), and to monolayer water clusters absorbed on surfaces of 
hexagonal AgI (1~) . 
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